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The concept of "virtual displacement" of a system is, of course, a basic 

one in analytical mechanics. This is not just one of the concepts of 

analytical mechanics, but a concept on which the whole structure of 

analytical mechanics has been erected, a concept determining the character 
of analytical mechanics, the degree of its generality, the limits of its 

applications. Analytical m ec h anics extends only over those material 

systems for which the concept of "virtual displacements" has been estab- 

lished or, in other words, the "virtual displacementsn have been defined. 

In the development of analytical mechanics, several phases can be dis- 

tinguished. Each of these phases had a corresponding definition of 

"virtual displacements" of a system. Thus, at present analytical 

mechanics contains several different definitions of "virtual displacements\ 

Two remarks are justified in relation to all these definitions. 

First, all definitions are linear. Their linearity lies in the fact 

that, according to these definitions, any linear combination of "virtual 

displacementsn of a system is also a "virtual displacementn of this 

system. 

Second, the "virtual displacementsn introduced by these definitions do 

not depend on forces acting on the system. This property should be under- 

stood in the sense that any row8nI, . . . . 6x3*, being "virtual displace- 

ments" of a system under some forces, remain its "virtual displacements~ 

for any other forces acting on this system. 

The separate phases in the development of analytical mechanics are 

distinguished according to the degree of generality of the material systems 

being investigated. The transition from one phase to the following was 
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accomplished by an extension of analytical emchanics to new systems. It 

was characterized by the introduction of a new definition of “virtual 

displacementsn of a system, which made possible this extension of the 

scope of application of analytical mechanics. The newly introduced de- 

finition of “virtual displacements” of a system always contained the pre- 

ceding one as a particular case. Thus, the transition from the preceding 

definition to the following one was a transition from a particular de- 

finition to a more general one. lhis process of successive generalization 
of the definition of “virtual displacements* possessed the remarkable 

peculiarity of not bringing analytical mechanics beyond the limits of one 

dynamical principle - the principle of Gauss. 

The most general of all currently accepted definitions of “virtual 

displacementsn is the known definition of Chetaev I 1 1 for systems 
with non-linear differential constraints of the first order. In this 

paper, some extension of the definition of Chetaev is given. This ex- 

tension is introduced within the principle of Gauss. On the basis of the 

linearity of the proposed definition and on the basis of the independence 

of the defined “virtual displacements” from the acting forces, a property 

of the proposed definition is proved. The significance of this property 

is that it may be used, in the specific sense, for the confirmation of 

the uniqueness of the proposed definition, and, in its framework, of all 
the previous definitions of “virtual displacementsn . 

1. Consider a system of n material points. We denote by x1, x2, x3, 
m1 = m2 = m ; 

i: 

x4, x5, x6, m4 = m5 = m6; . . . the Cartesian coordinates and 
masses of t e 

X; 

first, scond, . . . point respectively by X,, X2, X3; X4, X,, 

A!1 ;” 
the components of forces acting on the first, second . . . point. 

orces acting on the system (only active forces being considered) are 

assumed to be known functions of time, coordinates and velocities of the 
points of the system. We assume that at any given instant of time and at 
any given state of the system, the forces acting on the system may be 

changed in an arbitrary manner; here, as the state of the system at any 

instant of time we understand the positions and velocities of its points 

at thi3 instant. 

We assume the constraints of the system as being linear, and of the 

second order. It means, according to the terminology introduced by 
Delassus 121, that the equations of constraints depend linearly on accele- 

rations of the points of the system. Let the equations of the constraints 
of the system be 

ah1 xi’ + . . . + ah. sn xsn” = al, (h=i,...,m) (1) 

lhese equations are obviously assumed to be independent. 

We assune that the constraints of the system do not depend on the 



furcei acting on the system, This should be understood in the sense that 
the changes of the acting forces do not cause changes of the coefficients 
and of free terms in equations (1). In consequence of this assumption, 
the functions aki and tzk depend only on time, coordinates and velocities 
of the points of the system. 

Reaark. It should be noted that this paper is not the first attempt 
to investigate material systems with constraints of the second order, 
Material systems of this type have been discussed, for instance. in the 
papers by Detassus f 21 I ~r~ebor~ki E 33 s Vafcovicf 143 . 

2. According to the Gaussian principle, the set of accelerationa of 
be points of the system corresponds to the minimum of the function 

3n M. 

B l 

+@--~ 

2 

L z > 
i==l 

with the condition of satisfaction of the relations 

This inplies that the actual accelerations of the points of the material 
system should satisfy the equations 

where the coefficients Q, represent the undetermined Lagrangian multi- 
pliers, 

Introducing the notations 
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Since the equations of constraint are independent, the determinant of 

System (4) is different from zero. Consequently, this set of equations 

allows us to find the undetermined multipliers 0~. 

Equations (21, in which multipliers are found from equations (41, allow 

us to determine the accelerations of the system at any instant of time, 

if only the state of the system and the forces acting on it (no matter 

what they are) are given at this instant. 

3. We assume as "virtual displacementsn of the system all possible 

rows 6x,, . . . . 6xYn whose components satisfy the relations 

$ ahi8xi = 0 @=I,..., m) (5) 
i=1 

where coefficients axi are the coefficients of equations (11. 

We will denote this definition of "virtual displacementsn of the 

system by letter A. We will show that the definition A has all the pro- 
perties, pointed out in the introduction, which are common to all de- 

finitions-of "virtual displacements" 

mechanics. 

It is obviously linear. 

'ken, the "virtual displacements" 

of a system, accepted in analytical 

of a system, introduced by this de- 

finition, do not depend on the forces acting on the system. 

In fact, the coefficients ehi, by assumption, do not depend on the 

forces acting on the system. Thus any row 6r,, . . . . 8xjn, satisfying 

relations (5) for some forces and being the nvirtualdisplacementsn for 

these forces, will satisfy them and will be the "virtual displacements' 

of the system also for any other forces acting on the material system 

considered. 

Finally, the definition A is such that the d'Alembert-Lagrange 
principle yields, within this definition, the same equations.as does the 

Gaussian principle. 

To prove this, we will show that the d'Alembert-lagrange principle, 

within the definition A, yields precisely equations (2). The derivation 

of the equations of motion from the d'Alembert-Lagrange principle will 

be performed in the usual way. We nmltiply equations (51 by the unde- 

termined rmltipliers oh and add them to the fundamental equations of 

mechanics. We obtain 

g (mixi” - Xi) 8X( + fJ QA 5 ah$Xi = 0 
k-1 A=1 i=l 
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which may be rewritten in the form 

$ (?&Xi” - Xi + fj ShU),if 6Xi = 0 (6) 
i=l L=l 

Hence, with a proper selection of the multipliers o;\ (the multipliers 

q should be such that, in relations f6), the expressions within paren- 

thesis vanish) there follow inmediately the equations 

372 

?&Xc-Xi+ 2 GhtlxAi = 0 (i=i,.* .) 3n) (7) 
A=1 

bations (7), to which the equations of constraint are to be added, 

coincide completely with equations (71, derived from the Gaussian prin- 

ciple. This knpletes 

4. Two definitions 

called equivalent, if 

these definitions are 

The definitions of 

the proof. 

of "virtual displacementsfl of a system will be 

the sets of "virtual displacements" determined by 

identical. 

"virtual displacements* given by the relations 

5 ah&xi = 0 (h==l,...,m) 
(8) 

i=l 

5 b,iSXi = 0 (A = 1, . . . ) m) (91 
i=l 

respectively, where 

are obviously equivalent, 

zero>. 

(the determinant 1 qp 1 being different from 

& the other hand, if the definitions of nvirtual displacements", 

given by relations (8) and (91, respectively, are equivalent, then all 

the relations (9) may be represented as linear combinations of relations 

(8). 

In fact, relations (8) and (9) may be considered as two sets of linear 

algebraic equations. These two sets have, according to the assumption, 

identical solutions and consequently, as it is known from algebra, the 

equations of one set, for instance equations (91, will be linear combina- 

tions of the equations of another set - the set (8). 

We will prove the following proposition. 

If "virtual displacements* do not depend on the forces acting on the 
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system, and the d'Al~ert-~r~~ principle yields the same equations 
of motion as does the Gaussian principle, then there does not exist any 
linear definition of *virtual displacements* which would not be equivalent 
to the definition A. 

Let B be an arbitrary linear definition of "virtual displacementsn of 
the system, satisfying the ass~ti~ of the above proposition. 

The argument will be presented for any given instant of time and the 
corresponding state of the system. 

Let the row 
Sa,,..., &x3, (lo) 

be the nvirtual displacements* at some forces, according to the defini- 
tion B. 

Thus, for these forces, the relation 

$ (?&Xc - X$%x~ = 0 

i=1 
(11) 

(xi".here are the actual accelerations of the system) is satisfied, and 
consequently, the relation 

g ki_ i 3ktZXi = 0 

i==l A=1 

is al& satisfied, obtained from (11) by eliminating by means of equa- 
tions (2) the quantities sixi@'- Xi. 

l‘he last relation may be rewritten in the form 

i Qx z.a&i8C$iz 0 (121 
A-f i=l 

If the initially given forces are replaced by other ones, the row 
(10) does not cease to be the nvirtual displacements* of the system, and 
therefore, relation (12) does not cease to be valid for this transition 
to new forces. It implies that it is valid for any change of forces act- 
ing on the system. For these changes of forces, the sums 

a&~i + . . g + ak,3d~3~ 

being independent of the forces, remain invariant while the quantities 
5~ change arbitrarily. In fact, the system of equations (4) msy be written 
as 
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lhe last set of equations determines the forces related to any choice 

of multipliers 0~. 

From what was said above, it follows that the following equations 

should be satisfied 

5 ah&Q = 0 (A = 1, . ..) m) 

i=l 

'Ihis means that any "virtual displacementsn of the system determined 

by definition B will be also the "virtual displacementsn in the sense of 
definition A. 

ch the other hand, the number of equations of motion obtained from the 

d'Alembert-Langrange principle, for any definition of "virtual displace- 

mentsn, is equal to the number of linearly independent "virtual displace- 

mentsn. Thus, the number of linearly independent virtual displacements 

among all the "virtual displacements" given by definition B, is equal to 

3n- m, i.e. it is equal to the number of linearly independent "virtual 
displacementsn given by definition A. From this and from the theorem 

proved, it follows that the sets of "virtual displacements" of a system 

given by the definition A and B should be identical, and consequently, 
definition B should be equivalent to definition A. This completes the 

proof. 
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